Some samples of the training notes used are shown at the end of this document. The course notes are supplied in printed and PDF format to all participants on the course.

The training notes used in course OP-456-61 contain over 270 slides which support the practical exercises carried out on the courses.

Opticus fibre courses are based on a series of practical exercises including OTDR testing, Insertion Loss testing, fusion and mechanical splicing, cable preparation, jointing, connector inspection and connector termination. These exercises are documented in a Training Workbook

As an illustration of the work involved, the following pages highlight the range of modules available. Courses such as OP-456-61 have standard modules but courses can be tailored to suit specific needs such as those of the Rail Industry or Subsea environments.

Practice Training Modules for OP-45x Courses

SPLICING

•Module 1 Splicing Practice

•Module 2 Fibre & Cable Preparation

•Module 3 Jointing Cables In-Line

•Module 4 Jointing - Adding a spur cable

•Module 5 Making and Testing a Termination Joint

•Module 6 Mechanical Splicing

TESTING

•Module 7 Use a Visible Light Source to check continuity and fault find

•Module 8 Insertion Loss Measurement with source and meter

•Module 9 Comparing bend losses of G.652 and G.657 fibre

•Module 10 OTDR Practice – Set up of main parameters, pulsewidth, range, resolution and averaging time.

•Module 11 Commissioning/troubleshooting of cables that have multiple reflections

•Module 12 Commissioning/troubleshooting of cables that have splices and connectors

•Module 13 Testing a Passive Optical Network which has splitters using an OTDR

•Module 14 Testing a bare fibre end using an OTDR and bare fibre adapter

•Module 15 OTDR PC Analysis & Documentation

Practice Training Modules for OP-45x Courses

CONNECTORS & TERMINATING

- Module 16 Connector inspection
- Module 17 Connector Cleaning
- Module 18 Connector Terminating (epoxy polish technique)
- Module 19 Connector Quality Analysis

SPECIALIST SKILLS (Options may require extra time – contact Opticus for details)

•Module 20 Safe Removal of metallic buffer tube (stainless steel) from fibre

- •Module 21 Umbilical Termination into Fan Out Cable gland
- •Module 22 OTDR Testing of umbilical

•Module 23 Splice On Connectors

•Module 24 Pretium / Unicam Mechanical Splice Connectors

Module 1. Splicing Practice

Strip & Clean Fibre

Activate the Cleaver

Splice protection

Place fibre in the v-groove

Module 2. Fibre & Cable Preparation

Using dedicated cable stripping tools you will strip armoured cables with unitube design and multi tube design

Modules 3. & 4. Jointing Cables

Clamp Strength members

Completed joint

Route the fibres carefully into the fibre organiser

Adding a Spur cable

Module 5. Termination Joints

Making and Testing a Termination Joint and Wall Box connection You will connect a fibre patch panel to a small wall-mount termination box, and you will test the quality of the link with a source and meter. This demonstrates how to splice pigtails on to a route cable between termination joints and how to test the link

Module 6. Mechanical Splicing

Cleaving and aligning of fibres in a precision v-groove component The splice is monitored using an OTDR, source and meter or visible source

Module 7. Visual Fault Location

The visible fault locator is a low cost tool that allows you to check continuity and find faults in connectors, patchcords and distribution frames.

Module 8. Insertion Loss testing

A major part of testing cables after they have been installed is to test the insertion loss using a source and meter

Reference Cord 2

Meter

Module 9. Bend Testing G.652 & G.657

We measure the losses induced by tight bends in standard singlemode fibre (ITU spec G.652) and the new bend insensitive fibres (ITU spec G.657)

Modules 10. OTDR Setup

Extensive practice is carried out on several cable systems – short and long range and you learn how to set the key parameters of the OTDR pulsewidth, range, averaging time. You learn how to optimise these and to measure losses, cable lengths, reflection levels and how to troubleshoot and commission an optical cable.

Module 11. Cables with multiple connectors

The interpretation of traces can be tricky on short cables and in this exercise you will measure and analyse events that are close together.

You will test for:

- End to end loss
- Splice and connector loss
- Component Reflectance
- Optical Return Loss
- Faults and bends

Module 12. Cables with connectors, splices and bends

In this exercise you will measure and analyse the features on a fibre trace, and decide whether the fibre meets specification.

End to end loss Splice and connector loss Component Reflectance Optical Return Loss

Faults and bends

Module 13. PON Testing

The OTDR is used to troubleshoot the splitter in a Passive Optical Network (PON) which shows the superimposition of traces.

Module 14. Testing a Bare Fibre End

A major part of testing cable prior to installation is using a bare fibre adapter to launch light into the cable – this is a tricky process and practice is required.

Module 15. OTDR PC Analysis & Documentation

You will learn the operation of OTDR PC analysis software and look at real life examples and how to produce documentation for customers.

Loss	Test	Repor	rt						Optic	
Test Refere	ince	R0A 15002	-		-			_	Opin	
		N2145			Equipment	Equipment Used S			Cal Due date	
Test Locati	on A	Manchester N	lanchester NOC			FHP2A04			12/08/2014	
Test Locati	on B	Botton NOC			FHS2D02		970012198		12/08/2014	
Test Engine	eer	R Stephen					1		1	
Date		15/08/2014	-							
	Ref A to B (dBm)		- 1		Ref B to A (dBm)	-	- 1	
	1310	1550				1310	1550	1		
	-7.60	-6.80		-		-7,20	-6.10	_		
	Reading A t		oss A to B (c			Reading B to	o A (dBm)	Loss B to A		
Fibre No	1310	1550	1310	1660	Fibre No	1310	1550	1310	1550	
1	-10.40	-8.30	2.90	1.50	1	-9.90	-7.80	2.70	1.70	
2	-10.80	-8.10	3.30	1.30	2	-10.30	-7 90	3.10	1.80	
3	-10.60	-7.90	3,10	1.10	3	-10.80	-7.70	3,60	1.60	
-4	-10.40	-7.30	2.90	0.50	4	-10.60	-8.30	3.40	2.20	
5	-10.40	-7.90	2.90	1 10	5	-10.40	-7.70	3.20	1.60	
6	-10.30	-7.30	2.80	0.50	6	-10.40	-8.30	3.20		
7	-10.80	-7.70	3.30	0.90	7	-10.20	-7.90	3.00	1.80	
6	-10,80	-8.30	3.30	1.50	8	-10.60	-7.30	3.40		
9	-10.60	-8.30	3 10	1 50	9	-10.40	-7.90	3.20	1.80	
10	-10,40	-8.10	2.90	1.30	10	-10.40	-7.30	3,20	1.20	
	-10.80	-7.90	3.30	1.10	11	-10.30	-7.70	3.10	1.60	
11	210.00	-7.30		0.50	12	-10.80	-8.30	3.60	2 20	

Module 16. Connector Inspection

You will be presented with a variety of damaged and good connectors of different constructions and learn to recognise minor from critical damage and practice different methods of cleaning connectors.

e.g. The fibre shown looks reasonable on the left but the irregular pattern of light indicates a fibre break within the ferrule. If the microscope is refocused the jagged edge is revealed.

Module 17. Connector Cleaning

Practice the best methods to clean an optical connector. Whether to use a dry tissue or one soaked in alcohol, a cleaning cassette a cleaning wand.

Module 18. Epoxy Polish Termination

Connectors are fitted and cured

The connector is then polished using various grades of polishing film

Module 19. Connector Quality Testing

Connectors are viewed through a video microscope

The software automatically analyses the quality of the polish for scratches and defects

Module 20. Safe Removal of metal tube from fibre

In umbilical cables, OPGW and railway cables fibres are often buffered in metallic tubes – removal of the tubes without causing fibre damage can be a problem. You will practice techniques for removing this tubing safely.

Module 21. Fan Out Termination of Umbilical cable

Umbilical cables can be directly terminated into a fan out gland

Module 22. OTDR testing of Umbilical cables

OTDR testing of umbilical cables by setting OTDR thresholds to measure dB/km slopes and discontinuities

	Location (km)				Ref1 (dB)
1/G	0.0188-	0.03	1,524	0.65(2	P)
2/R 3/E	2.0480 2.0673	0.74 0.05	0.366 2.425	0.26(2 >3.00	P) -57.97 -51.42
Overal1	(End-to-En	d) Los	s: 1.73	dB	
Primary	Trace: Tra	cel 2k	m cable.	SOR	
	Date: 10/	30/09		Range:	3 km
	Time: 12: Type: MT9	19 PM	Reso	lution:	0.100 m
Product	Type: MT9	083A-0	6 Pulse	Width:	10 n.s
Opt. M	odule:			Index:	1.467700
Fiber	Type: Sin	glemod	le Wave	Length:	1310 nm 0.0000 km
FAS Thre	sholds:		Horz.	Shift:	0.0000 km
Defiles	Loss:	0.02 0	B Vert.	Shift:	0.00 dB 68096
Piber	Cance: -4	u.uu d	ID NO. AV	erages:	00030
Provid	Break: atter: -7	0.50 G	Trad	e Type: S	04721
Trace	Flags: Ana	lvsis		a type. o	
	ORL: N/A				
			ige 1 -		
	uage:				1
Cabl	e ID:				
Fibe					
	ngth: 1310				
0rg.					
Term.					
Cable					
Condi					
0 Oper					
	ment: lier: Anri	tan			
	odel: MT90		3		
	S/N: 6200				
		1.1.1.1.4.1			
					i i
 Optics	S/N:				
Optics					

New FTTx projects call for fast connections in difficult to reach areas. In this module you will learn how to do this quickly and easily with the latest fusion splicing techniques.

Module 24. Unicam Mechanical Splice Connectors

Mechanical Splice Connectors can be difficult to fit without high failure rates – we show the best way to minimise wasted connectors and expense

The following pages shows examples of the course notes which are supplied in printed and PDF format.

Fibre Coatings

The finished primary coated fibre will be used in the manufacture of a variety of optical cables. The coating is essential for protection and gives the fibre flexibility. Without it the fibre is easily broken.

A secondary Nylon coating of 900 microns in diameter may be added to give the fibre greater protection.

Fibre coated in this way is used to make patchcords and internal cables. This fibre is called "tight buffered" or "secondary coated" or "ruggedized fibre"

Cladding 125 microns

Core 9 or 50 or 62.5 microns

Fibre Profiles

Graded Index multimode fibre slows light passing down the centre of the fibre relative to light passing to the outer part of the core. Singlemode has a very small core which restricts light to one mode only which eliminates modal problems but means that it is very difficult to launch light into singlemode fibre.

Opticus OP-456-1-29

Types of Dispersion

Modal Dispersion in multimode fibres - pulses are carried by several modes travelling at different speeds resulting in pulse spreading

Chromatic Dispersion in singlemode fibres - pulses are carried on a narrow range of wavelengths which travel at different speeds Chromatic dispersion has two components -Material and Waveguide dispersion. By adjusting the manufacturing process for the fibre the Waveguide dispersion can be adjusted.

Polarisation Mode Dispersion in singlemode fibres – there are two polarization mode components that are normally excited equally and they travel in the same phase. However, variations in the fibre circularity and bends or pressure points can lead to a phase displacement and pulse spreading. The effect can cause degradation in the performance of high speed SDH and SONET transmission system and is particularly a problem for high speed DWDM

System budget calculations

Transmitter Output	0dBm
Connector Loss	4 x 0.5 dB = 2 dB
Cable Loss	10 x 0.33 dB = 3.3 dB
Splice Loss	8 x 0.2 dB = 1.6 dB
Total Loss	6.9dB
<i>Total Loss</i> Ageing & Rework Margin	6.9dB 5 dB

The expected loss of the system will be the sum of the Connector Loss, the Cable loss, and the Splice loss. Loss measurements using a Source and Meter will reveal the actual attenuation.

Total losses are 6.9dB, and power reaches the receiver at -6.9dBm. This is 23.1dB higher than the receiver sensitivity. Clearly there is no problem with range for this system, and any Ageing and Rework margins can be accommodated. However, overload of the receiver is a possibility, although this could be resolved by adding a fixed attenuator at the receiver end.

ROV Umbilical Example

An umbilical cable between a ship and a Remotely Operated Underwater Vehicle (ROV) operates over singlemode fibres of 3km.

TMS Management Module

Transmitter Output	-4dBm at 1550nm
Connector Loss	5 x 0.5 dB = 2.5 dB
Optical Slip Ring	1 x 4 dB = 4 dB
Cable Loss	3km x 0.2 dB/km = 0.6 dB
Splice Loss	2 x 0.2 = 0.4 dB
Total Loss	7.5 dB
<i>Total Loss</i> Received Level	7.5 dB -11.5 dBm

Passive Optical Network (PON) Example

A PON distribution Network operates at 1490nm from the Head with a feeder cable of 5km to a 1 x 32 splitter and then a maximum of 1km to the subscriber

Transmitter Output	-3dBm at 1490nm
Connector Loss	2 x 0.5 dB = 1.0 dB
Splitter	1 x 16 dB = 16 dB
Cable Loss	5 + 1km x 0.21 dB/km = 1.26 dB
Splice Loss	4 x 0.2 = 0.8 dB
Total Loss	19.06 dB
Received Level	-22.06 dBm
Receiver Sensitivity	-28dBm
Available Margin for Ageing & Rework	5.94 dB under budget

OM & OS fibre Classifications

Multimode

Fibre Type	Core Size (microns)	Maximum Fibre cable attenuation (dB/km) (Mhz.km)					Ethernet Link Distance (IEEE 802.3)					
		850n m	953nm	1300nm	850nm	953nm	1300nm	1000-SR	10G-SR	40G-SR4 & 100G-SR10	100G-SR4 & 400G-SR16	50G-SR & 200G-SR4
OM1	62.5	3.5		1.5	200		500	275m	33m			
OM2	50	3.5		1.5	500		500	550m	82m			
OM3	50	3.0		1.5	2000		500		300m	100m	70m	70m
OM4	50	3.0		1.5	4700		500		400m	150m	100m	100m
OM5	50	3.0	2.3	1.5	4700	2470	500		400m	150m	100m	100m

Singlemode		Maximum Attenuation (dB/km)			Range for 10Gbps		
		1310nm	1383nm	1550nm	1310nm	1550nm	
OS1	S1 9/125 Standard Singlemode Fibre		1.0	N/A	1.0	10km	40km
OS2	9/125	Singlemode Low water peak fibre	0.4	0.4	0.4	10km	40km

Macrobending

0.2dB/div

Event	1	2
1310	0.09dB	0.2dB
1550	0.63dB	0.16dB

OTDR Traces taken at 1310nm and 1550nm show the position of the bend clearly.

Event 1 has a greater loss when tested at 1550nm than it does at 1310nm indicating a bend at this location.

Event 2 shows similar losses at both wavelengths which is expected for a normal fusion splice.

OTDR Measurements without Launch Cables

Buried Cable Design

Strength members:Metallic strength members are normally steel or braided steel and if non-metallic, Kevlar or fibre glass are often used.

The tubes are normally filled with a water-blocking compound normally petroleum or silicone based. This compound can also be pumped in to the gaps between inner sheath and the water blocking tapes.

Umbilical Cables

Connector polish styles

Connector Losses and Return losses

	Insertion Lo	oss (dB)	Reflectance (-dB)		
Multimode	typical max		typical	max	
FCPC	0.6	1	30	20	
SCPC	"	"		"	
STPC	"	"	30	25	
FCSPC	"	"	35	30	
STSPC	"	"	35	30	

	Insertion Lo	oss (dB)	Reflectance	e (-dB)
Singlemode	typical	max	typical	max
FCPC	0.2	0.5	40	35
SCPC	"		"	"
STPC	"	"	"	"
FCSPC	"	"	45	40
STSPC	"	"	"	"
FCUPC	"	"	50	45
STUPC	"	"	"	"
FCAPC	"	"	60	50
SCAPC	"	"	"	"

Measure or estimate the amount of fibre that needs to be stripped This depends on the amount of bare fibre required by the cleaving tool. (30mm is normal)

Strip the fibre perhaps in short lengths if required. Wet a cleaning tissue with a little IPA and wipe the exposed glass until it squeaks and you are sure that you cannot feel any residual coating clinging to the fibre.

Cleaving Procedure

Activate the Cleaver

Cleaved Fibre

Place the fibre in the splicer vee-groove

Clamp Cable Strength Members

Route the fibres carefully into the fibre organiser

Central or Peripheral strength members should be secured

Simple Termination Patch Panel

Fibre Break within ferrule

The fibre shown looks reasonable on the left but the irregular pattern of light indicates a fibre break within the ferrule. If the microscope is refocused the jagged edge is revealed

